Unraveling and targeting the lipidome of clinical prostate cancer.

Lisa M. Butler¹,2, Chui Yan Mah¹,2, Jelle Machiels³, Andrew Vincent¹,2, Xander Spotbeen¹,3, Shadrack Mutuku¹,2, Rajdeep Das², Rita Derua⁴, Etienne Waelkens⁴, Paul Trim¹, Marten Snel¹, Margaret M Centenera¹,2, Johannes V. Swinnen³

¹South Australian Health and Medical Research Institute
²Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of Adelaide
³Laboratory for Experimental Medicine and Endocrinology, K.U.Leuven, B-3000 Leuven, Belgium
⁴Department of Molecular Cell Biology and the ProMeta Center, K.U.Leuven, B-3000 Leuven, Belgium

Background. Metabolic rewiring is both a hallmark feature of prostate cancer cells and a potential therapeutic vulnerability, but remains a critical gap in the molecular profiling of this disease. Herein, we detail and spatially visualize the lipidomic landscape of clinical prostate cancer.

Experimental Design. Mass spectrometry-based imaging and lipidomics were used to measure and spatially visualize the lipidome of a cohort of prostate tumors and matched benign tissues (n=21), an independent validation cohort (n=47), and primary prostate explants cultured in the absence or presence of a clinical AR antagonist, enzalutamide (n=43).

Results. Significant differences in phospholipid (PL) composition were evident in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids across all PL classes and elongated fatty acid chains specifically in phosphatidylinositol and phosphatidylserine-based lipids. Associations between abundance of individual PLs and malignancy were identified for both patient cohorts, and PL composition was characteristically altered in patient tissues that responded to AR inhibition. Moreover, targeting of the observed tumor-related changes in lipid synthesis, saturation and elongation, via inhibition of acetyl-CoA carboxylase or stearoyl-CoA desaturase, significantly reduced cellular proliferation.

Conclusion. This first characterization of the prostate cancer lipidome in a clinical tissue context revealed enhanced fatty acid synthesis, elongation and desaturation as tumor-defining features, with potential for therapeutic targeting to improve patient outcomes.